Structure, Dielectric Properties, and Thermal Expansion of the New Phase $Hf_{0.75}Sn_{0.25}O_2$

R. Mackay and A. W. Sleight

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003

and

M. A. Subramanian

Central Research and Development Department, E. I. duPont de Nemours & Co., Wilmington, Delaware 19880-0328

Received July 10, 1995; in revised form October 9, 1995; accepted October 25, 1995

with the composition Hf_{0.75}Sn_{0.25}O₂. Single crystals were pre-
pared in a potassium borate flux. The structure was refined $M^{3+}M^{5+}O_2$ compounds (10). The average size of the cation **pared in a potassium borate flux. The structure was refined** $M^{3+}M^{5+}O_2$ **compounds (10). The average size of the cation from single crystal X-ray diffraction data, leading to** $R = 0.026$ **. in the** ZrO_2 **- or HfO₂-base from single crystal X-ray diffraction data, leading to** $R = 0.026$ **.** in the ZrO₂- or HfO₂-based compositions with the α -PbO₂.
The space group is *Pbcn* with $a = 4.86(1)$, $b = 5.699(1)$, and structure may also be **The space group is** *Pbcn* **with** $a = 4.86(1)$ **,** $b = 5.699(1)$, and structure may also be considered large relative to the usual $c = 5.204(1)$ Å. Over the temperature range from 30 to 800°C, action size in the rutile struct $c = 5.204(1)$ Å. Over the temperature range from 30 to 800°C,

a rather low thermal expansion (~4 × 10⁻⁶/°C) is observed.

The dielectric constant of a Hf_{0.75}Sn_{0.25}O₂ sample measured from

10³ to 10⁷ Hz and fr

found to have excellent properties for dielectric resonators ently metastable at one atmosphere and room temperaoperating at microwave frequencies (1–8). For example, ture (1). Cation ordering in these compositions is not the composition $Zr_{0.4}Sn_{0.1}Ti_{0.5}O_2$ has a moderate dielectric usually observed. However, annealing the composition constant (\sim 38), a low dielectric loss ($Q \sim$ 7000 at 7 Ghz), 5ZrO₂ \cdot 7TiO₂ does result in cation ordering and a tripled and a temperature coefficient of resonant frequency less *a* axis (13). than 1 ppm/ \rm{C} (2). These values are sensitive to composi- The thermal expansion of \rm{ZrO}_{2} - and \rm{HfO}_{2} -based com-

in that it can be regarded as based on hexagonal close- tions in the $HfO₂$ –TiO₂ systems. The behavior is typical packed oxygen layers with cations occupying half of the of low-thermal-expansion anisotropic materials (18) such octahedral sites. The filling pattern of the octahedral sites as cordierite; that is, expansion in some directions is comis, however, different in the two structures. In the rutile pensated for by contraction in others. The net result is structure, a linear chain of edge-shared octahedra results, very low volume expansion. In the case of $HfO₂–TiO₂$ whereas in the α -PbO₂ structure, a zigzag chain of edge- compositions with the α -PbO₂ structure, while the *a* and shared octahedra results. Metal–metal bonding across the *c* axes expand with increasing temperature, the *b* axis conshared edge can favor the α -PbO₂ structure in the d^3 situa-tracts. The α -PbO₂ structure exists over a considerable tion such as pertains to ReO₂ (9). However, *d* electron range of composition in the HfO₂–TiO₂ system, and the concentration cannot be used to explain the occurrence thermal expansion behavior is highly sensitive to the Hf/ of the α -PbO₂ structure for PbO₂ or compositions in the Ti ratio (15). For ZrO_2 –TiO₂ compositions with the α -

TiO₂ systems. Apparently, the α -PbO₂ structure also be-A new phase with the α -PbO₂ structure has been discovered comes competitive with the rutile structure for larger cat-

The α -PbO₂ structure exists for ZrO₂–TiO₂, HfO₂– $TiO₂$, $ZrO₂$ – $SnO₂$, and $ZrO₂$ – $TiO₂$ – $SnO₂$ solid solutions **INTRODUCTION** (1–8, 11) but does not exist for any of these end members under ordinary conditions. In the case of the $ZrO₂$ –SnO₂ Certain compositions having the α -PbO₂ structure are system, compositions with the α -PbO₂ structure are appar-

tion variations and processing conditions. positions with the α -PbO₂ structure has been of some inter-The α -PbO₂ structure is similar to the rutile structure est (14–17). Low thermal expansion is found for composi- ZrO_2 –TiO₂, HfO₂–TiO₂, ZrO₂–SnO₂, and ZrO₂–SnO₂– PbO₂ structure, there is expansion along all three axes with

Formula	$Hf_{0.77}Sn_{0.23}O_2$	Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Space Group a, A	<i>Pbcn</i> (No. 60) 4.861(1)		Hf/Sn 0.0035(3) 0.0038(3) 0.0035(4)			$0.0\,$	$-0.0003(1)$ 0.0	
b, Å	5.699(1)	\circ	0.005(2)	0.003(1)	0.003(1)	$-0.006(2)$	$-0.007(2)$	0.003(2)
c, À	5.204(1)							
$V, \, \mathring{A}^3$	144.2(7)							
d_{calc} , g/cm ³	9.10							
Crystal size, mm ³	$0.16 \times 0.06 \times 0.02$							
μ (Mo $K\alpha$), cm ³	594.3						Wah Chang), SnO_2 (Baker Analytical, 99%), and KNO_3	
Data collection instrument	Rigaku AFC6R						(EM Science, 99.97%), with B_2O_3 (<i>ESAR</i> , 99%) in a molar	
Radiation (monochromated in incident	Mo $K\alpha$ ($\lambda = 0.71069$)						ratio 1:1:4:10. The mixture was heated in a Pt crucible at	
beam)	A)						1400° C for 12 hours, evaporating the flux to dryness. The	
Temperature, °C	23						resulting two-phase mixture had a pinkish hue and con-	
Scan method	$\omega - 2\theta$							
Octants measured	$-h \rightarrow h, 0 \rightarrow k, 0 \rightarrow l$						tained transparent needle- and plate-like crystals. A single-	
Data collection range, 2θ	$0 - 65$						phase powder sample was prepared by combining $HfO2$	
No. reflections measured	605						and $SnO2$ in the molar ratio 7:3 with excess $B2O3$ and	
No. unique data, total with $F_0^2 > 3\sigma(F_0^2)$	181						heating at 1400°C for 8 hours. A sol–gel method was also	
No. parameters refined	17						used to prepare a single-phase sample by following the	
Transmission factors, max/min	1.736						procedure of Kudesia et al. (6), using $HfOCl_2 \cdot 8H_2O$. The	
Secondary extinction coefficient	$9.4(4) \times 10^{-6}$							
R^a , Rw^b GOF ^c	0.026, 0.030, 1.099						sample for dilatometry measurements was made by heating	
Largest difference peak, $e/\text{\AA}^3$	2.97						a mixture of $HfO2$ and $SnO2$ in the mole ratio 3:1 in a	
Largest neg. difference peak, $e/\text{\AA}^3$	-3.00						covered crucible at 1050° C for 2 hours. The sample was	

 $\sqrt{\sum}w \mid F_o|^2]^{1/2}; w = 1/\sigma^2(|F_o|).$

increasing temperature. However, addition of SnO₂ to the

ZrO₂-TiO₂ system lowers the thermal expansion. Thus for

ZrO₂-TiO₂ system lowers the thermal expansion. Thus for

ture of HfO₂-TiO₂ system is nearly

EXPERIMENTAL

Synthesis. Single crystals suitable for X-ray diffraction **Interatomic Distances Less Than 3.5 Å** in Hf_0 ₇₅Sn_{0.25}O₂ were prepared by combining the powders $HfO₂$ (Teledyne

Positional Parameters for $Hf_{0.75}Sn_{0.25}O_2$

TABLE 1 TABLE 3 Crystal Data for Hf0.75Sn0.25O2 Anisotropic Displacement Values *Uij* **for Hf0.75Sn0.75O2**

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O			Hf/Sn $0.0035(3)$ $0.0038(3)$ $0.0035(4)$ 0.0		$-0.0003(1)$ 0.0 $0.005(2)$ $0.003(1)$ $0.003(1)$ $-0.006(2)$ $-0.007(2)$ $0.003(2)$	

Wah Chang), SnO₂ (Baker Analytical, 99%), and KNO₃ (EM Science, 99.97%), with B_2O_3 (*ÆSAR*, 99%) in a molar ratio 1:1:4:10. The mixture was heated in a Pt crucible at 1400° C for 12 hours, evaporating the flux to dryness. The resulting two-phase mixture had a pinkish hue and contained transparent needle- and plate-like crystals. A singlephase powder sample was prepared by combining $HfO₂$ and $SnO₂$ in the molar ratio 7:3 with excess $B₂O₃$ and heating at 1400°C for 8 hours. A sol-gel method was also
used to prepare a single-phase sample by following the
procedure of Kudesia *et al.* (6), using HfOCl₂ · 8H₂O. The sample for dilatometry measurements was made by heating a mixture of $HfO₂$ and $SnO₂$ in the mole ratio 3:1 in a covered crucible at 1050° C for 2 hours. The sample was $r^a R = \sum |F_o| - |F_c| |\sum |F_o|$.
a $R = \sum |F_o| - |F_c| |\sum |F_o|$. *(PVA)* solution added as binder, pressed into a pellet. It $c_{\text{GOF}} = (\Sigma(|F_o| - |F_c|)/\sigma i)/(\overline{N_{\text{obs. ref.}}}-N_{\text{parameters}})$. was heated again in a covered crucible at 1350°C for 4 hours. The final dimensions of the pellet was $26.2 \times$

TABLE 4

		were prepared by combining the powders $HfO2$ (Teledyne									
						$Hf-O$	2.023(4) 2.075(4)	$\times 2$ $\times 2$	$Hf-Hf$	3.3002(6)	\times 2
			TABLE 2				2.144(4)	$\times 2$	$O-O$	2.629(7)	\times 1
		Positional Parameters for Hf_0 ₇₅ Sn ₀ ,5O ₂					3.271(5)	$\times 2$		2.81(1)	\times 1
										2.8604(9)	$\times 2$
Atom	\boldsymbol{x}	v	Z.	B (eq)	Occupancy	$O-Hf$	2.023(4)	\times 1		2.870(3)	$\times 2$
							2.075(4)	\times 1		3.048(5)	$\times 2$
Hf	0.0	0.17811(6)	1/4	0.28(3)	0.77(5)		2.144(4)	\times 1		3.058(9)	\times 1
Sn	0.0	0.17811	1/4	0.28	0.23		3.271(5)	\times 1		3.085(4)	$\times 2$
О	0.2758(9)	0.3938(7)	0.420(1)	0.3(1)	1.00					3.21(1)	\times 1

TABLE 5 Interatomic Angles within MO_6 **Octahedron**

$O1-M-O5$	77.1(2)	$O2 - M - O3$	96.1(9)
$O2-M-O6$	77.1(2)	$O1-M-O3$	97.7(1)
$O5-M-O6$	81.8(3)	$O2-M-O4$	97.7(1)
$O1-M-O6$	85.7(1)	$O3-M-O4$	105.2(9)
$O2-M-O5$	85.7(1)	$O1-M-O2$	157.2(2)
$O3-M-O6$	86.7(1)	$O3-M-O5$	167.6(2)
$O4-M-O5$	86.7(1)	$O4-M-O6$	167.6(2)
$O1-M-O4$	96.1(9)		

in Table 1. The structure solution and refinement were performed using the SHELXS and TEXSAN software programs (19). Microprobe analysis was done on a Cameca XS50 4-spectometer electron microprobe by wavelength dispersive analysis. Dilatometer data were collected on a Netzsch Thermal Analysis System from room temperature to 800 \degree C with a heating rate of 5 \degree C/min. Calibration and correction from a sapphire standard **FIG. 2.** Metal–oxygen bond lengths in a distorted octahedron. were applied.

The dielectric constant (K) and the loss factor (tan δ) were measured on a sintered pellet at various frequencies (10³ to 10⁷ Hz) from room temperature to 300°C rutile-type structure of SnO₂ but with a shift in peak posi-
by the two-terminal method using Hewlett–Pa

The needle-shaped crystals in the two-phase mixture
were found to have a tetragonal unit cell with lattice parameters $a = 4.776(1)$ Å and $c = 3.2047(6)$ Å. The X-ray with lattice parameters $a = 4.8679(8)$ Å, $b = 5.707(2)$

same for Figs. 1–3. hedron.

 $c = 3.185$ Å for SnO₂). Microprobe analysis of a single large crystal of this phase indicated the extent of Hf substi-**RESULTS** tution in $\text{Sn}_{1-x}\text{Hf}_x\text{O}_2$ was in the range $0.36 \pm 0.02 < x <$

and $c = 5.2098(6)$ Å. A single-phase sample was prepared with lattice parameters $a = 4.8704(4)$ Å, $b = 5.7052(8)$ Å,

FIG. 1. α -PbO₂ type structure. Numbering of oxygen atoms is the **FIG. 3.** Oxygen–oxygen bond lengths around a metal-centered octa-

FIG. 4. Linear thermal expansion of HfTiO₄ and Hf_{0.75}Sn_{0.25}O₂.

and $c = 5.2102(4)$ Å. There was no indication of a shows oxygen–oxygen distances within a single octasuperstructure in any of these samples. The single crystal hedron. high-angle cell refinement with lattice parameters $a =$ reported (14–16). The measurement was repeated here ment of mixed occupancy on the metal site gave a metal each show a higher rate of expansion from room temperacontent of $\text{Hf}_{0.75}\text{Sn}_{0.23}\text{O}_2$. Microprobe analysis on five ture to 200°C than from 200 to 800°C. This seems to crystals from the same synthesis suggests a slightly higher be present in the published plots as well. Plots of relative Sn content of 0.29 \pm 0.01. Thus, unlike (Hf, Ti)O₂, expansion for HfTiO₄ and Hf_{0.75}Sn_{0.25}O₂ are given in has a narrow range of homogeneity at approxi- are identical to those reported by Ruh *et al.* for a 50% mately $Hf_{0.75}Sn_{0.25}O_2$. Details of atomic parameters HfO_2 –50% TiO₂ composition (15), which is lower than from the single crystal refinement are listed in Tables that reported by Bayer *et al.* (17). We measure α_{30-200} =

Table 5 corresponds to the numbering in Figs. 2 and 3. Figure 1 shows the zigzag chains of metal atoms in for any Zr/Ti/Sn/O compositions, but not as low as octahedral sites of distorted close-packed layers of oxygen reported for some Hf-rich $(Hf, Ti)O₂$ phases. atoms. Readily apparent is the shift in metal atom position The dielectric data for $Hf_{0.75}Sn_{0.25}O_2$ are shown in Fig. away from the octahedral center, increasing the distance 5. As found for other members of the α -PbO₂ family, these edges form the shortest O–O distance (2.63 Å). the dielectric constant is lower than observed for the α -Figure 2 shows the metal–oxygen distances, and Fig. 3 $PbO₂$ -type phases which contain Ti.

data were collected on a unit cell determined by The thermal expansion of HfTiO₄ has been previously 4.861(1) \AA , $b = 5.699(1)$ \AA , and $c = 5.204(1)$ \AA . Refine- for direct comparison with $\text{Hf}_{0.75}\text{Sn}_{0.25}\text{O}_2$. The samples which has a broad range of homogeneity, $(Hf, Sn)O₂$ Fig. 4. Our linear thermal expansion data for $HfTiO₄$ 2 and 3. $5.0 \times 10^{-6} \text{C}^{-1}$ and $\alpha_{200-800} = 4.3 \times 10^{-6} \text{C}^{-1}$. The thermal Interatomic bond distances and angles are listed in expansion of $\text{Hf}_{0.75}\text{Sn}_{0.25}\text{O}_2$ is lower than that of HfTiO₄. Tables 4 and 5. The numbering of the oxygen atoms in For $\text{Hf}_{0.75}\text{Sn}_{0.25}\text{O}_2$, $\alpha_{30-200} = 5.0 \times 10^{-6} \text{C}^{-1}$, and $\alpha_{200-800} =$ $^{\circ}C^{-1}$. This is lower expansion than reported

between metal atoms. Note that with the shift of metal the dielectric loss is very low and the dielectric constant atom position away from the shared octahedral edges, varies little with frequency or temperature. However,

FIG. 6. The α -PbO₂ structure showing only the Pb atoms which are in an approximate cubic close-packed arrangement.

DISCUSSION

The single-crystal structural determinations of $ZrTiO₄$, $ZrTi_{0.5}Sn_{0.5}O_4$, HfTiO₄, and now $Hf_{1.5}Sn_{0.5}O_4$ establish that they all crystallize in the α -PbO₂-type structure (12, 18, 19). The structures of the Zr-containing compounds are more distorted than the structures of the Hf compounds, as can be seen by comparison of the values in Table 6. The *c/b* ratio for the unit cells would equal 0.866 for an ideal hexagonal close-packed arrangement of oxygen atoms. The deviation from ideality is greater for $ZrTiO₄$ than for $HfTiO₄$. Another way of comparing this distortion is noting the increased metal–metal distance through the edge-sharing octahedra. The metal–metal distances are greater for the Zr compounds even though the unit cell volumes are smaller. The angles in the metal-centered octahedron which would be 90° in an ideal octahedron show the highest deviations for $ZrTiO₄$.

Both the rutile and α -PbO₂ structures are based on a hexagonally closed-packed arrangement of oxygen anions with cations occupying half of the octahedral sites. How-FIG. 5. (a) Variation of Hf_{0.75}Sn_{0.25}O₂ dielectric constant with fre-
quency (Hz); (b) variation of Hf_{0.75}Sn_{0.25}O₂ dielectric constant at 1 Mhz
only one variable positional parameter whereas the ortho-
with te rameters. These extra parameters in the α -PbO₂ structure allow this structure to be much more accommodating. One aspect of this is that the cation lattice approaches cubic close-packing as shown in Fig. 6. This results in less cation– cation repulsion and a denser structure with a higher Made-
 SHOP are energy.

d(*M–M*), A˚ 3.352 3.312 3.300 3.270 **ACKNOWLEDGMENT**

This work was supported by NSF Grant DMR-9308530.

-
- 2. K. Wakino, K. Minai, and H. Tamura, *J. Am. Ceram. Soc.* **67,** 278 14. R. W. Lynch and B. Morosin, *J. Am. Ceram. Soc.* **55,** 409 (1972).
K. Wakino, *in* "Proceedings, 6th IEEE International Symposium on 15. R. Ruh, G. W. Hollenberg, E. G. Charles, and V. A. Patel, *J. Am.*
- 3. K. Wakino, *in* "Proceedings, 6th IEEE International Symposium on 15. R. Ruh, G. W. Hollenberg, Applications of Ferroelectrics. Lehigh University. Bethlehem. PA. *Ceram. Soc.* **59,** 495 (1976). Applications of Ferroelectrics, Lehigh University, Bethlehem, PA, June 8–11, 1986," p. 97. 16. 16. 16. 16. H. Ikawa, A. Iwai, K. Hiruta, H. Shimojima, K. Urabe, and S. Uda-
- 4. A. E. McHale and R. S. Roth, *J. Am. Ceram. Soc.* **66,** C18 (1983). gawa, *J. Am. Ceram. Soc.* **71,** 120 (1988).
-
- 6. R. Kudesia, R. L. Snyder, R. A. Condrate, Sr., and A. E. McHale, *J. Phys. Chem. Solids* **54,** 671 (1993). 18. A. W. Sleight, *Endeavour* **19,** 64 (1995).
-
-
- 9. D. B. Rogers, R. D. Shannon, A. W. Sleight, and J. L. Gillson, *Inorg.* Woodlands, 1989. *Chem.* **8,** 841 (1969). 20. A. Harari, J.-P. Bocquet, M. Huber, R. Collongues, *C. R. Acad. Sci.*
- 10. Muller and Roy, *in* ''Crystal Chemistry of Non-Metallic Materials,'' *Paris Ser. C* **267,** 1316 (1968). Vol. 4, Springer-Verlag, New York, 1974. 21. A. Siggel and M. Jansen, *Z Anorg. Allg. Chem.* **582,** 93 (1990).
- **REFERENCES** 11. J. Stöcker and R. Collongues *C. R. Acad. Sci.* **245,** 431 (1957).
	- 12. R. E. Newnham, *J. Am. Ceram. Soc.* **50,** 216 (1967).
- 1. G. Wolfram and H. E. Göbel, *Mater. Res. Bull.* **16,** 1455 (1981). 13. P. Bordet, A. McHale, A. Santoro, and R. S. Roth, *J. Solid State* 2. K. Wakino, K. Minai and H. Tamura, *J. Am Ceram Soc.* 67, 278. *Chem.* 64, 30
	-
	-
	-
- 5. A. E. McHale and R. S. Roth, *J. Am. Ceram. Soc.* **69,** 827 (1986). 17. G. Bayer, M. Hofmann, and L. J. Gauckler, *J. Am. Ceram. Soc.* **74,**
	-
- 7. R. Kudesia, A. E. McHale, R. A. Condrate, Sr., and R. L. Snyder, 19. (a) G. M. Sheldrick, *in* ''Crystallographic Computing 3'' (G. M. Shel-*J Mater. Sci.* 28, 5569 (1993). drick, C. Krüger, R. Goddard, Eds.), p. 175, Oxford Univ. Press, 8. S. Hirano, T. Hayashi, and A. Hattori, *J. Am. Ceram. Soc.* **74,** Oxford, 1985. (b) ''TEXSAN: Single Crystal Structure Analysis Soft-1320 (1991). ware, Version 5.0 (1989).'' Molecular Structures Corporation, The
	-
	-